Data with Bert logo

Building Dynamic Table-Driven Queries

MJ-t-sql-Tuesday

This post is a response to this month's T-SQL Tuesday #104 prompt by me! T-SQL Tuesday is a way for SQL Server bloggers to share ideas about different database and professional topics every month.

This month's topic is asking what code would you hate to live without?


Watch this week's video on YouTube

When given the choice between working on new projects versus maintaining old ones, I'm always more excited to work on something new.

That means that when I build something that is going to used for years to come, I try to build it so that it will require as little maintenance as possible in the future.

One technique I use for minimizing maintenance is making my queries dynamic.  Dynamic queries, while not right for every situation, do one thing really well: they allow you to modify functionality without needing a complete rewrite when your data changes.  The way I look it, it's much easier to add rules and logic to rows in table than having to modify a table's columns or structure.

To show you what I mean,let's say I want to write a query selecting data from model.sys.database_permissions:

SELECT class
      ,class_desc
      ,major_id
      ,minor_id
      ,grantee_principal_id
      ,grantor_principal_id
      ,type
      ,permission_name
      ,state
      ,state_desc
  FROM model.sys.database_permissions

Writing the query as above is pretty simple, but it isn't flexible in case the table structure changes in the future or if we want to programmatically write some conditions.

Instead of hardcoding the query as above, here is a general pattern I use for writing dynamic table-driven queries.  SQL Server has the handy views sys.all_views and sys.all_columns that show information about what columns are stored in each table/view:

2018-07-03_21-00-45

Using these two views, I can use this dynamic SQL pattern to build the same exact query as above:

-- Declare some variables up front
DECLARE 
    @FullQuery nvarchar(max),
    @Columns nvarchar(max),
    @ObjectName nvarchar(128)

-- Build our SELECT statment and schema+table name
SELECT 
    @Columns = COALESCE(@Columns + ', ', '') + '[' + c.[name] + ']',
    @ObjectName = QUOTENAME(s.name) + '.' + QUOTENAME(o.name)
FROM 
    sys.all_views o  
    INNER JOIN sys.schemas s
        ON o.schema_id = s.schema_id
    INNER JOIN sys.all_columns c
        ON o.object_id = c.object_id
WHERE 
    o.[name] = 'database_permissions'
ORDER BY
    c.column_id 

-- Put all of the pieces together an execute
SET @FullQuery = 'SELECT ' + @Columns + ' FROM ' + @ObjectName

EXEC(@FullQuery)

The way building a dynamic statement like this works is that I build my SELECT statement as a string based on the values stored in my all_columns view.  If a column is ever added to this view, my dynamic code will handle it (I wouldn't expect this view to change that much in future versions of SQL, but in other real-world tables I can regularly expect changing data).

Yes, writing certain queries dynamically like this means more up front work.  It also means some queries won't run to their full potential (not necessarily reusing plans, not tuning every individual query, needing to be thoughtful about SQL injection attacks, etc...).  There are A LOT of downsides to building queries dynamically like this.

But dynamically built queries make my systems flexible and drastically reduce the amount of work I have to do down the road.  In the next few weeks I hope to go into this type of dynamically built, table-driven process in more detail (so you should see the pattern in the example above get reused soon!).

How to Search and Destroy Non-SARGable Queries on Your Server

Unexpected SQL Server Performance Killers #3

Photo by Cibi Chakravarthi on Unsplash

Watch this week's video on YouTube

In this series I explore scenarios that hurt SQL Server performance and show you how to avoid them. Pulled from my collection of "things I didn't know I was doing wrong for years."


Looking for a script to find non-SARGable queries on your server? Scroll to the bottom of this post.

What is a "SARGable" query?

Just because you add an index to your table doesn't mean you get immediate performance improvement. A query running against that table needs to be written in such a way that it actually takes advantage of that index.

SARGable, or "Search Argument-able", queries therefore are queries that are capable of utilizing indexes.

Examples please!

Okay let's see some examples of SARGable and non-SARGable queries using my favorite beverage data.

There are non-clustered indexes on the Name and CreateDate columns

First, let's look at a non-SARGable query:

SELECT Name
FROM dbo.CoffeeInventory
WHERE CONVERT(CHAR(10),CreateDate,121)  = '2017-08-19'

Although this query correctly filters our rows to a specific date, it does so with this lousy execution plan:

903f0-1ci7exqc5ao00i4bfm24ruw

SQL Server has to perform an Index Scan, or in other words has to check every single page of this index, to find our '2017–08–19' date value.

SQL Server does this because it can't immediately look at the value in the index and see if it is equal to the '2017–08–19' date we supplied — we told it first to convert every value in our column/index to a CHAR(10) date string so that it can be compared as a string.

Since the SQL Server has to first convert every single date in our column/index to a CHAR(10) string, that means it ends up having to read every single page of our index to do so.

The better option here would be to leave the column/index value as a datetime2 datatype and instead convert the right hand of the operand to a datetime2:

SELECT Name
FROM dbo.CoffeeInventory
WHERE CreateDate = CAST('2017-08-19' AS datetime2)

Alternatively, SQL Server is smart enough to do this conversion implicitly for us if we just leave our '2017–08–19' date as a string:

SELECT Name
FROM dbo.CoffeeInventory
WHERE CreateDate = '2017-08-19'

c63f6-1ady-tfnhv8j5dnygkim34g

In this scenario SQL gives us an Index Seek because it doesn't have to modify any values in the column/index in order to be able to compare it to the datetime2 value that '2017–08–19' got converted to.

This means SQL only has to read what it needs to output to the results. Much more efficient.

One more example

Based on the last example we can assume that any function, explicit or implicit, that is running on the column side of an operator will result in a query that cannot make use of index seeks, making it non-SARGable.

That means that instead of doing something non-SARGable like this:

SELECT Name, CreateDate
FROM dbo.CoffeeInventory
WHERE DAY(CreateDate)  = 19

We want to make it SARGable by doing this instead:

SELECT Name, CreateDate
FROM dbo.CoffeeInventory
WHERE 
    CreateDate  >= '2017-08-19 00:00:00' 
    AND CreateDate < '2017-08-20 00:00:00'

In short, keep in mind whether SQL Server will have to modify the data in a column/index in order to compare it — if it does, your query probably isn't SARGable and you are going to end up scanning instead of seeking.

OK, non-SARGable queries are bad…how do I check if I have any on my server?

The script below looks at cached query plans and searches them for any table or index scans. Next, it looks for scalar operators, and if it finds any it means we have ourselves a non-SARGable query. The fix is then to rewrite the query to be SARGable or add a missing index.

-- From https://github.com/bertwagner/SQLServer/blob/master/Non-SARGable%20Execution%20Plans.sql
-- This script will check the execution plan cache for any queries that are non-SARGable.
-- It does this by finding table and index scans that contain a scalar operators

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

DECLARE @dbname SYSNAME
SET @dbname = QUOTENAME(DB_NAME());

WITH XMLNAMESPACES (DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/showplan')

SELECT
   stmt.value('(@StatementText)[1]', 'varchar(max)') AS [Query],
   query_plan AS [QueryPlan],
   sc.value('(.//Identifier/ColumnReference/@Schema)[1]', 'varchar(128)') AS [Schema], 
   sc.value('(.//Identifier/ColumnReference/@Table)[1]', 'varchar(128)') AS [Table], 
   sc.value('(.//Identifier/ColumnReference/@Column)[1]', 'varchar(128)') AS [Column] ,
   CASE WHEN s.exist('.//TableScan') = 1 THEN 'TableScan' ELSE 'IndexScan' END AS [ScanType],
   sc.value('(@ScalarString)[1]', 'varchar(128)') AS [ScalarString]
FROM 
    sys.dm_exec_cached_plans AS cp
    CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) AS qp
    CROSS APPLY query_plan.nodes('/ShowPlanXML/BatchSequence/Batch/Statements/StmtSimple') AS batch(stmt)
    CROSS APPLY stmt.nodes('.//RelOp[TableScan or IndexScan]') AS scan(s)
    CROSS APPLY s.nodes('.//ScalarOperator') AS scalar(sc)
WHERE
    s.exist('.//ScalarOperator[@ScalarString]!=""') = 1 
    AND sc.exist('.//Identifier/ColumnReference[@Database=sql:variable("@dbname")][@Schema!="[sys]"]') = 1
    AND sc.value('(@ScalarString)[1]', 'varchar(128)') IS NOT NULL

I've found this script useful for myself, but if you find any issues with it please let me know, thanks!

Why Parameter Sniffing Isn't Always A Bad Thing (But Usually Is)

05b48-1w4tmpnro22csahycrb9iug.jpeg

In this series I explore scenarios that hurt SQL Server performance and show you how to avoid them. Pulled from my collection of "things I didn't know I was doing wrong for years."

Watch this week's video on YouTube

Last week we discussed how implicit conversions could be one reason why your meticulously designed indexes aren't getting used.

Today let's look at another reason: parameter sniffing.

Here's the key: Parameter sniffing isn't always a bad thing.

Most of the time it's good: it means SQL Server is caching and reusing query plans to make your queries run faster.

Parameter sniffing only becomes a problem when the cached plan isn't anywhere close to being the optimal plan for given input parameters.

So what's parameter sniffing?

Let's start with our table dbo.CoffeeInventory which you can grab from Github.

4dedb-17uyfuaa5zzf_h5civ9ww4w

The key things to know about this table are that:

  1. We have a nonclustered index on our Name column.
  2. The data is not distributed evenly (we'll see this in a minute)

Now, let's write a stored procedure that will return a filtered list of coffees in our table, based on the country. Since there is no specific Country column, we'll write it so it filters on the Name column:

DROP PROCEDURE IF EXISTS dbo.FilterCoffee
GO
CREATE PROCEDURE dbo.FilterCoffee
@ParmCountry varchar(30)
AS
BEGIN
    SELECT Name, Price, Description 
    FROM Sandbox.dbo.CoffeeInventory
    WHERE Name LIKE @ParmCountry + '%'
END
GO

Let's take a look at parameter sniffing in action, then we'll take a look at why it happens and how to solve it.

EXEC dbo.FilterCoffee @ParmCountry = 'Costa Rica'
EXEC dbo.FilterCoffee @ParmCountry = 'Ethiopia'

Running the above statement gives us identical execution plans using table scans:

In this case we explicitly specified the parameter @ParmCountry. Sometimes SQL will parameterize simple queries on its own.

That's weird. We have two query executions, they are using the same plan, and neither plan is using our nonclustered index on Name!

Let's step back and try again. First, clear the query plan cache for this stored procedure:

DECLARE @cache_plan_handle varbinary(44)
SELECT @cache_plan_handle = c.plan_handle
FROM 
    sys.dm_exec_cached_plans c
    CROSS APPLY sys.dm_exec_sql_text(c.plan_handle) t
WHERE 
    text like 'CREATE%CoffeeInventory%' 
-- Never run DBCC FREEPROCCACHE without a parameter in production unless you want to lose all of your cached plans...
DBCC FREEPROCCACHE(@cache_plan_handle)

Next, execute the same stored procedure with the same parameter values, but this time with the 'Ethiopia' parameter value first. Look at the execution plan:

EXEC dbo.FilterCoffee @ParmCountry = 'Ethiopia'
EXEC dbo.FilterCoffee @ParmCountry = 'Costa Rica'

9a86e-1en_loooe8aojxr0jonohzg

Now our nonclustered index on Name is being utilized. Both queries are still receiving the same (albeit different) plan.

We didn't change anything with our stored procedure code, only the order that we executed the query with different parameters.

What the heck is going on here!?

This is an example of parameter sniffing. The first time a stored procedure (or query) is ran on SQL server, SQL will generate an execution plan for it and store that plan in the query plan cache:

SELECT
    c.usecounts,
    c.cacheobjtype,
    c.objtype,
    c.plan_handle,
    c.size_in_bytes,
    d.name,
    t.text,
    p.query_plan
FROM 
    sys.dm_exec_cached_plans c
    CROSS APPLY sys.dm_exec_sql_text(c.plan_handle) t
    CROSS APPLY sys.dm_exec_query_plan(c.plan_handle) p
    INNER JOIN sys.databases d
    ON t.dbid = d.database_id
WHERE 
    text like 'CREATE%CoffeeInventory%'

2c94d-1w8c6qvsh_ca3jumixdbnjw

All subsequent executions of that same query will go to the query cache to reuse that same initial query plan — this saves SQL Server time from having to regenerate a new query plan.

Note: A query with different values passed as parameters still counts as the "same query" in the eyes of SQL Server.

In the case of the examples above, the first time the query was executed was with the parameter for "Costa Rica". Remember when I said this dataset was heavily skewed? Let's look at some counts:

SELECT 
    LEFT(Name,CHARINDEX(' ',Name)) AS Country, 
    COUNT(*) AS CountryCount 
FROM dbo.CoffeeInventory 
GROUP BY 
    LEFT(Name,CHARINDEX(' ',Name))

109ae-1rdzlvzj99ccxpni3mwjnaw

"Costa Rica" has more than 10,000 rows in this table, while all other country names are in the single digits.

This means that when we executed our stored procedure for the first time, SQL Server generated an execution plan that used a table scan because it thought this would be the most efficient way to retrieve 10,003 of the 10,052 rows.

This table scan query plan is only optimal for Costa Rica . Passing in any other country name into the stored procedure would return only a handful of records, making it more efficient for SQL Server to use our nonclustered index.

However, since the Costa Rica plan was the first one to run, and therefore is the one that got added to the query plan cache, all other executions ended up using the same table scan execution plan.

After clearing our cached execution plan using DBCC FREEPROCCACHE, we executed our stored procedure again but with 'Ethiopia' as our parameter. SQL Server determined that a plan with an index seek is optimal to retrieve only 6 of the 10,052 rows in the table. It then cached that Index Seek plan, which is why the second time around the 'Costa Rica' parameter received the execution plan with Index Seek.

Ok, so how do I prevent parameter sniffing?

This question should really be rephrased as "how do I prevent SQL Server from using a sub-optimal plan from the query plan cache?"

Let's take a look at some of the techniques.

1. Use WITH RECOMPILE or OPTION (RECOMPILE)

We can simply add these query hints to either our EXEC statement:

EXEC dbo.FilterCoffee @ParmCountry = 'Ethiopia' WITH RECOMPILE
EXEC dbo.FilterCoffee @ParmCountry = 'Costa Rica' WITH RECOMPILE

or to our stored procedure itself:

DROP PROCEDURE IF EXISTS dbo.FilterCoffee
GO
CREATE PROCEDURE dbo.FilterCoffee
@ParmCountry varchar(30)
AS
BEGIN
    SELECT Name, Price, Description 
    FROM Sandbox.dbo.CoffeeInventory 
    WHERE Name LIKE @ParmCountry + '%'

    OPTION (RECOMPILE)

END
GO

What the RECOMPILE hint does is force SQL Server to generate a new execution plan every time these queries run.

Using RECOMPILE eliminates our parameter sniffing problem because SQL Server will regenerate the query plan every single time we execute the query.

The disadvantage here is that we lose all benefit from having SQL Server save CPU cycles by caching execution plans.

If your parameter sniffed query is getting ran frequently, RECOMPILE is probably a bad idea because you will encounter a lot of overheard to generate the query plan regularly.

If your parameter sniffed query doesn't get ran often, or if the query doesn't run often enough to stay in the query plan cache anyway, then RECOMPILE is a good solution.

2. Use the OPTIMIZE FOR query hint

Another option we have is to add either one of the following hints to our query. One of these would get added to the same location as OPTION (RECOMPILE) did in the above stored procedure:

OPTION (OPTIMIZE FOR (@ParmCountry UNKNOWN))

or

OPTION (OPTIMIZE FOR (@ParmCountry = 'Ethiopia'))

OPTIMIZE FOR UNKNOWN will use a query plan that's generated from the average distribution stats for that column/index. Often times it results in an average or bad execution plan so I don't like using it.

OPTIMIZE FOR VALUE creates a plan using whatever parameter value specified. This is great if you know your queries will be retrieving data that's optimized for the value you specified most of the time.

In our examples above, if we know the value 'Costa Rica' is rarely queried, we might optimize for index seeks. Most queries will then run the optimal cached query plan and we'll only take a hit when 'Costa Rica' is queried.

3. IF/ELSE

This solution allows for ultimate flexibility. Basically, you create different stored procedures that are optimized for different values. Those stored procedures have their plans cached, and then an IF/ELSE statement determines which procedure to run for a passed in parameter:

DROP PROCEDURE IF EXISTS dbo.FilterCoffee
GO
CREATE PROCEDURE dbo.FilterCoffee
@ParmCountry varchar(30)
AS
BEGIN
    IF @ParmCountry = 'Costa Rica'
    BEGIN
    EXEC dbo.ScanningStoredProcedure @ParmCountry
    END
    ELSE
    BEGIN
    EXEC dbo.SeekingStoredProcedure @ParmCountry
    END
END
GO

This option is more work (How do you determine what the IF condition should be? What happens more data is added to the table over time and the distribution of data changes?) but will give you the best performance if you want your plans to be cached and be optimal for the data getting passed in.

Conclusion

  1. Parameter sniffing is only bad when your data values are unevenly distributed and cached query plans are not optimal for all values.
  2. SQL Server caches the query plan that is generated from the first run of a query/stored procedure with whatever parameter values were used during that first run.
  3. Using the RECOMPILE hint is a good solution when your queries aren't getting ran often or aren't staying in the the query cache most of the time anyway.
  4. The OPTIMIZE FOR hint is good to use when you can specify a value that will generate a query plan that is efficient for most parameter values and are OK with taking a hit for a sub-optimal plan on infrequently queried values.
  5. Using complex logic (like IF/ELSE) will give you ultimate flexibility and performance, but will also be the worst for long term maintenance.

Are your indexes being thwarted by mismatched datatypes?

In this series I explore scenarios that hurt SQL Server performance and show you how to avoid them. Pulled from my collection of "things I didn't know I was doing wrong for years."


Watch this week's video on YouTube

Have you ever encountered a query that runs slowly, even though you've created indexes for it?

There's a few different reasons why this may happen. The one I see most frequently happens in the following scenario.

I'll have an espresso please

Let's say I have a table dbo.CoffeeInventory of coffee beans and prices that I pull from my favorite green coffee bean supplier each week. It looks something like this:

-- Make sure Actual Execution Plan is on
-- Let's see what our data looks like
SELECT * FROM dbo.CoffeeInventory

If you want to follow along, you can get this data set from this GitHub Gist

I want to be able to efficiently query this table and filter on price, so next I create an index like so:

CREATE CLUSTERED INDEX CL_Price ON dbo.CoffeeInventory (Price)

Now, I can write my query to find out what coffee prices are below my willingness to pay:

SELECT Name, Price FROM dbo.CoffeeInventory WHERE Price < 6.75

You would expect this query to be blazing fast and use a clustered index seek, right?

WRONG!

What the heck?

Why is SQL scanning the table when I added a clustered index on the column that I am filtering in my predicate? That's not how it's supposed to work!

Well dear reader, if we look a little bit closer at the table scan operation, we'll notice a little something called CONVERT_IMPLICIT:

CONVERT_IMPLICIT: ruiner of fast queries

What is CONVERT_IMPLICIT doing? Well as it implies, it's having to convert some data as it executes the query (as opposed to me having specified an explicit CAST() or CONVERT() function in my query).

The reason it needs to do this is because I defined my Price column as a VARCHAR(5):

Who put numeric data into a string datatype? Someone who hasn't had their coffee yet today.

In my query however, I'm doing a comparison against a number WHERE Price < 6.75. SQL Server is saying it doesn't know how to compare a string to a number, so it has to convert the VARCHAR string to a NUMERIC(3,2).

This is painful.

Why? Because SQL is performing that implicit conversion to the numeric datatype for every single row in my table. Hence, it can't seek using the index because it ends up having to scan the whole table to convert every record to a number first.

And this doesn't only happen with numbers and string conversion. Microsoft has posted an entire chart detailing what types of data type comparisons will force an implicit conversion:

<https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-type-conversion-database-engine>

That's a lot of orange circles/implicit conversions!

How can I query my coffee faster?

Well in this scenario, we have two options.

  1. Fix the datatype of our table to align with the data actually being stored in this (data stewards love this).
  2. Not cause SQL Server to convert every row in the column.

Number 1 above is self-explanatory, and the better option if you can do it. However, if you aren't able to modify the column type, you are better off writing your query like this:

SELECT Name, Price FROM dbo.CoffeeInventory WHERE Price < '6.75'

d03ed-1uzge0e3lizkhtodyonsfmg

Since we do a comparison of equivalent datatypes, SQL Server doesn't need to do any conversions and our index gets used. Woo-hoo!

What about the rest of my server?

Remember that chart above? There are a lot of different data comparisons that can force a painful column side implicit conversion by SQL Server.

Fortunately, Jonathan Kehayias has written a great query that helps you find column side implicit conversions by querying the plan cache. Running his query is a great way to identify most of the implicit conversions happening in your queries so you can go back and fix them — and then rejoice in your improved query performance!

How to Use SQL Temporal Tables For Easy Point-In-Time Analysis

"Bordeaux, The Grand Theatre" by Stefano Montagner is licensed under CC BY-NC-ND 2.0

Watch this week's video on YouTube

Have you ever needed to look at what data in a table used to look like?

If you have, it probably took a knuckle-cracking filled session of writing group-by statements, nested sub-queries, and window functions to write your time-travelling query.

Sorry for your lost day of productivity — I've been there too.

Fortunately for us, SQL Server 2016 introduces a new feature to make our point-in-time analysis queries easy to write: temporal tables.

Temporal Tables? Are Those The Same As Temporary Tables?

Don't let the similar sounding name fool you: "temporal" <> "temporary".

Temporal tables consist of two parts:

  1. The temporal table — this is the table that contains the current values of your data.
  2. The historical table — this table holds all of the previous values that at some point existed in your temporal table.

You might have created a similar setup yourself in previous versions of SQL using triggers. However, using a temporal table is different from this because:

  1. You don't need to write any triggers/stored procedures! All of the history tracking is done automatically by SQL Server.
  2. Retrieving the data uses a simple WHERE clause — no complex querying required.

I want to make my life easier by using temporal tables! Take my money and show me how!

I'm flattered by your offer, but since we are good friends I'll let you in on these secrets for free.

First let's create a temporal table. I'm thinking about starting up a car rental business, so let's model it after that:

IF OBJECT_ID('dbo.CarInventory', 'U') IS NOT NULL 
BEGIN
    -- When deleting a temporal table, we need to first turn versioning off
    ALTER TABLE [dbo].[CarInventory] SET ( SYSTEM_VERSIONING = OFF  ) 
    DROP TABLE dbo.CarInventory
    DROP TABLE dbo.CarInventoryHistory
END
CREATE TABLE CarInventory   
(    
    CarId INT IDENTITY PRIMARY KEY,
    Year INT,
    Make VARCHAR(40),
    Model VARCHAR(40),
    Color varchar(10),
    Mileage INT,
    InLot BIT NOT NULL DEFAULT 1,
    SysStartTime datetime2 GENERATED ALWAYS AS ROW START NOT NULL,
    SysEndTime datetime2 GENERATED ALWAYS AS ROW END NOT NULL,
    PERIOD FOR SYSTEM_TIME (SysStartTime, SysEndTime)     
)   
WITH 
( 
    SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.CarInventoryHistory)   
)

The key things to note with our new table above are that

  1. it contains a PRIMARY KEY.
  2. it contains two datetime2 fields, marked with GENERATED ALWAYS AS ROW START/END.
  3. It contains the PERIOD FOR SYSTEM_TIME statement.
  4. It contains the SYSTEM_VERSIONING = ON property with the (optional) historical table name (dbo.CarInventoryHistory).

If we query our newly created tables, you'll notice our column layouts are identical:

SELECT * FROM dbo.CarInventory
SELECT * FROM dbo.CarInventoryHistory

Let's fill it with the choice car of car rental agencies all across the U.S. — the Chevy Malibu:

INSERT INTO dbo.CarInventory (Year,Make,Model,Color,Mileage) VALUES(2017,'Chevy','Malibu','Black',0)
INSERT INTO dbo.CarInventory (Year,Make,Model,Color,Mileage) VALUES(2017,'Chevy','Malibu','Silver',0)

Although we got some unassuming car models, at least we can express our individuality with two different paint colors!

In all of the remaining screen shots, the top result is our temporal table dbo.CarInventory and the bottom result is our historical table dbo.CarInventoryHistory.

You'll notice that since we've only inserted one row for each our cars, there's no row history yet and therefore our historical table is empty.

Let's change that by getting some customers and renting out our cars!

UPDATE dbo.CarInventory SET InLot = 0 WHERE CarId = 1
UPDATE dbo.CarInventory SET InLot = 0 WHERE CarId = 2

3c413-1bm7zz7udxcqupl7lu08mdg

Now we see our temporal table at work: we updated the rows in dbo.CarInventory and our historical table was automatically updated with our original values as well as timestamps for how long those rows existed in our table.

After a while, our customers return their rental cars:

UPDATE dbo.CarInventory SET InLot = 1, Mileage = 73  WHERE CarId = 1
UPDATE dbo.CarInventory SET InLot = 1, Mileage = 488 WHERE CarId = 2

It's totally possible for someone to have driven 73 or 488 miles in a Chevy Malibu in under 4 minutes…ever hear the phrase "drive it like a rental"?

Our temporal table show the current state of our rental cars: the customers have returned the cars back to our lot and each car has accumulated some mileage.

Our historical table meanwhile got a copy of the rows from our temporal table right before our last UPDATE statement. It's automatically keeping track of all of this history for us!

Continuing on, business is going well at the car rental agency. We get another customer to rent our silver Malibu:

UPDATE dbo.CarInventory SET InLot = 0 WHERE CarId = 2

0ac4b-1oci0xi8evaahk8fidhj0fg

Unfortunately, our second customer gets into a crash and destroys our car:

DELETE FROM dbo.CarInventory WHERE CarId = 2

The customer walked away from the crash unscathed; the same can not be said for our profits.

With the deletion of our silver Malibu, our test data is complete.

Now that we have all of this great historically tracked data, how can we query it?

If we want to reminisce about better times when both cars were damage free and we were making money, we can write a query using SYSTEM_TIME AS OFto show us what our table looked like at that point in the past:

SELECT
    *
FROM 
    dbo.CarInventory
FOR SYSTEM_TIME AS OF '2017-05-18 23:49:50'

The good old days.

And if we want to do some more detailed analysis, like what rows have been deleted, we can query both temporal and historical tables normally as well:

-- Find the CarIds of cars that have been wrecked and deleted
SELECT DISTINCT
    h.CarId AS DeletedCarId
FROM
    dbo.CarInventory t
    RIGHT JOIN dbo.CarInventoryHistory h
    ON t.CarId = h.CarId 
WHERE 
    t.CarId IS NULL

8c11d-1aaxrda5ljxkpenh9ei2t5a

C̶o̶l̶l̶i̶s̶i̶o̶n̶ Conclusion

Even with my car rental business not working out, at least we were able to see how SQL Server's temporal tables helped us keep track of our car inventory data.

I hope you got as excited as I did the first time I saw temporal tables in action, especially when it comes to querying with FOR SYSTEM_TIME AS OF. Long gone are the days of needing complicated queries to rebuild data for a certain point in time.