4 Reasons To Avoid VARCHAR(8000)

Watch this week's video on YouTube

When first learning SQL Server, I had the brilliant idea of defining every column on my table as VARCHAR(8000). After all, the VARCHAR datatype only consumes as much storage space as the string itself (plus two bytes), so even if I defined the max length of a column as 8000, I wouldn't be wasting storage space if my data was smaller than that.

My development life would be easier too since I wouldn't have to think about the kind of data I was storing in my columns; I could define everything as VARCHAR(8000) once and never have to go back to make any changes. Brilliant!

While I was correct about not wasting storage space, it turns out the idea of making every column VARCHAR(8000) is a terrible idea.

What follows is a (partial) list of reasons to avoid defining every column in your table as VARCHAR(8000).

1. Documentation

When columns are defined accurately with specific data types and lengths, they help provide understanding about the data they contain.

For example, imagine you see following column in a table:

ZipCode VARCHAR(10)

If your database is full of U.S. data, this column definition provides enough information to make some pretty good assumptions:

  • With a length of 10, we can expect some of the data to be in the 5 digit zip code + 4 digit extended zip code format (eg. 12345-6789)
  • Choosing VARCHAR instead of CHAR means there are probably some entries that contain 5 digit zip codes and some with 5+4 digit zip codes (and a dash)

We can't be 100% confident about our assumptions until we verify them by profiling the data itself, but a lot of times having decent guesses is good enough.

2. Validation

Your application (hopefully) has some good client and server side validation built in. Those validations don't always work so it never hurts to have some extra validation on the database side of things as well.

Imagine the zip code field is directly next to the "Delivery Instructions" box on our app's "Shipping Details" page. It's not a stretch to think that a user will someday accidentally type in the special delivery instructions ("Please leave the package behind the house next to the giant pineapple bush") into the zip code field instead of the instructions field.

If your ZipCode field is defined as VARCHAR(8000), that set of delivery instructions will make its way into the database in the completely wrong column.

Have fun cleaning up that dirty data. If instead the field was correctly defined as ZipCode VARCHAR(10), the insert would fail and you would prevent that erroneous data from entering your database.

3. Indexing

Ever try to index a column (or set of columns) that total more than 1700 bytes (or 900 bytes in older versions)?


SQL Server will let you create indexes that contain keys that may potentially be greater than 1700 bytes, but as soon as you try to insert large data into those indexes you will be greeted with this wall of error:


Of course there are some tricks you can use to index those wide key combinations, but you don't want to use those unless you absolutely have to.

4. Inaccurate Estimates

Imagine we have 1000 rows of data in our table with a VARCHAR(8000) column:

CREATE TABLE #Varchar8000Test
    Id int identity PRIMARY KEY,
    BigColumn varchar(8000)

INSERT INTO #Varchar8000Test VALUES ('a');
GO 1000

You'll notice that each of those rows' BigColumn fields only contain 3 bytes of data (1 for "a" + 2 for varchar overhead). That's about 3 KB total for the whole table of data (plus whatever the int column takes up)

You would therefore think that SQL Server would know and use this information when executing a query :

SELECT * FROM #Varchar8000Test ORDER BY BigColumn

However it doesn't:


SQL Server estimates that each row is ~4 KB! This is because SQL Server doesn't sample the data to estimate the average row size for VARCHAR columns, it uses half of the defined length.

This carries over to other parts of the query plan too, like memory grants:


Fitting this whole table into memory should only take about ~7 KB (3 KB for our BigColumn data), but SQL Server reserves significantly more than that. In this example an excess of 6 MB isn't a huge deal, but if you are working with a table with many more rows, those excessive memory grants can use up hundreds of megabytes or even gigabytes of memory unnecessarily.

...and more!

This list is only a start: there are plenty of additional reasons why defining every column on your table as VARCHAR(8000). My goal with this post wasn't to create a comprehensive list, but rather to provide enough compelling reasons to have dissuaded my novice self a few years ago from even considering this as an option.

Searching Complex JSON Data

Watch this week's video on YouTube

Computed column indexes make querying JSON data fast and efficient, especially when the schema of the JSON data is the same throughout a table.

It's also possible to break out a well-known complex JSON structure into multiple SQL Server tables.

However, what happens if you have different JSON structures being stored in each row of your database and you want to write efficient search queries against all of the rows of your complex JSON strings?

Complex JSON

Let's start out by creating a staging table that contains various fragments of JSON stored in a nvarchar column:

DROP TABLE IF EXISTS dbo.ImportedJson;
CREATE TABLE dbo.ImportedJson
    Id int IDENTITY,
    JsonValue nvarchar(max)

INSERT INTO dbo.ImportedJson (JsonValue) VALUES (N'{ 
    "Property1" : "Value1", 
    "Property2" : [1,2,3]

INSERT INTO dbo.ImportedJson (JsonValue) VALUES (N'{ 
    "Property1" : "Value2", 
    "Property3" : [1,2,3], 
    "Property4" : ["A","B","C",null], 
    "Property5" : { 
                    "SubProp1": "A", 
                    "SubProp2": { 
                                    "SubSubProp2": 1.2,
                                    "SubSubProp3" : true
    "Property6" : [{"ArrayProp":"A"},{"ArrayProp":"B"}], 
    "Property7" : 123, 
    "Property8" : null 

INSERT INTO dbo.ImportedJson (JsonValue) VALUES (N'{ 
    "Property8" : "Not null", 
    "Property9" : [4,5,6]

SELECT * FROM dbo.ImportedJSON;

And the results: 


Search Queries

If I want to search these values I have a few options.

First, I could write something like:

SELECT * FROM dbo.ImportedJSON WHERE JsonValue LIKE '%Property4" : "["A%';

But that technique is difficult to use on data that I'm not familiar with, and it will run slowly because it won't be able to seek to the data in any indexes.

A second option is to create something like a full text index, but unlike full text indexes on XML columns, I will have to fight with all of the quotes and colons and curly braces since there is no support for JSON. Yuck.

Option 3: Search Table

Option 3 is my favorite: normalize the data into a key and value columns that are easy to search:

        Id as RowId,
        CAST(hierarchyid::GetRoot().ToString() + CAST(ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS NVARCHAR(4000)) + '/' AS NVARCHAR(4000)) as [HierarchyId], 
        CAST([type] AS INT) AS [type] 
        CROSS APPLY OPENJSON(JsonValue,'$') 
        CAST(JSONRoot.[HierarchyId] + CAST(ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS NVARCHAR(4000)) + '/' AS NVARCHAR(4000)), 
        CASE WHEN JSONRoot.[type] = 4 THEN JSONRoot.[key]+'['+t.[key]+']' ELSE t.[key] END,
        CAST(t.[type] AS INT) 
        CROSS APPLY OPENJSON(JSONRoot.[value],'$') t 
        JSONRoot.[type] > 3 /* Only parse complex data types */
    CAST([HierarchyId] AS HierarchyId) AS [HierarchyId],



This query parses each property of the original JSON input so that each key-value pair gets put on its row. Complex JSON objects are broken out into multiple rows, and a HierarchyId is included to maintain parent-child relationships if needed.

Having all of this complex JSON parsed out into a key value table now opens up possibilities of what we can do with it.

Process and Indexing

The above query isn't going to run itself. You'll either need to schedule it or incorporate it into an ETL to parse out your staged JSON data on a regular basis (kind of like full text indexing works asyncronously).

Alternatively you can write the logic into a trigger that fires on new row inserts into your staging table if you need this data in real-time. As with all triggers though, I wouldn't recommend this if your staging table is getting rows added at a high rate.

Once you decide how to store your parsed JSON data, add some indexes that will help your search queries run nice and fast (CREATE NONCLUSTERED INDEX IX_Value_Include ON dbo.ParsedJSON ([value]) INCLUDE ([key],RowId) would probably be a good starting point for many search queries) and you'll be doing a lot better than WHERE JsonValue LIKE '%Property4%'.