IN vs UNION ALL

Published on: 2019-04-30

Watch this week’s episode on YouTube.

When you need to filter query results on multiple values, you probably use an IN() statement or multiple predicates separated by ORs:

WHERE Col1 IN ('A','B','C')

or

WHERE Col1 = 'A' OR Col1 = 'B' OR Col1 = 'C'

While SQL Server will generate the same query plan for either syntax, there is another technique you can try that can sometimes can improve performance under certain conditions: UNION ALL.

This post is a continuation of my series to document ways of refactoring queries for improved performance. I’ll be using the StackOverflow 2014 data dump for these examples if you want to play along at home.

Lookups and Scans

Let’s say we have the following index on our dbo.Badges table:

CREATE NONCLUSTERED INDEX [IX_Badges] ON [dbo].[Badges] ([Name]) INCLUDE ([UserId]);

Next let’s run these two separate queries:

/* Query 1 */
SELECT 
    Name, UserId, Date 
FROM 
    dbo.Badges 
WHERE 
    Name = 'Benefactor'
OPTION(MAXDOP 1)

/* Query 2 */
SELECT 
    Name, UserId, Date 
FROM 
    dbo.Badges 
WHERE 
    Name = 'Research Assistant'
OPTION(MAXDOP 1)

Note I’m enforcing MAXDOP 1 here to remove any performance differences due to parallelism in these demos.

The nonclustered index doesn’t cover these queries – while SQL Server can seek the index for the Name predicate in the WHERE clause, it can’t retrieve all the columns in the SELECT from the index alone. This leaves SQL Server with a tough choice to make:

  1. Does it scan the whole clustered index to return all the required columns for the rows requested?
  2. Does it seek to the matching records in the nonclustered index and then perform a key lookup to retrieve the remaining data?

So, what does SQL Server decide to do?

Execution plans

For Query 1, SQL Server thinks that reading the entire clustered index and returning only the rows where Name = 'Benefactor' is the best option.

SQL Server takes a different approach for Query 2 however, using the non-covering nonclustered indexes to find the records with Name = 'Research Assistant' and then going to look up the Date values in the clustered index via a Key Lookup

The reason SQL server chooses these two different plans is because it thinks it will be faster to return smaller number of records with a Seek + Key Lookup approach (“Research Assistant”, 127 rows), but faster to return a larger number of records with a Scan (“Benefactor”, 17935 rows).

Kimberly Tripp has an excellent post that defines where this “tipping point” from a key lookup to a clustered index scan typically occurs, but the important thing to keep in mind for this post is that we can sometimes use SQL Server’s ability to switch between these two approaches to our advantage.

Combining Queries with IN

So, what plan does SQL Server generate when we combine our two queries into one?

SELECT 
    Name, UserId, Date 
FROM 
    dbo.Badges 
WHERE 
    Name IN ('Benefactor','Research Assistant')
OPTION(MAXDOP 1)
Key Lookup

Interestingly enough SQL Server decides to retrieve the requested rows from the nonclustered index and then go lookup the remaining Date column in the clustered index.

If we look at the page reads (SET STATISTICS IO ON;) we’ll see SQL Server had to read 85500 pages to return the data requested:

(18062 rows affected)
Table 'Badges'. Scan count 2, logical reads 85500, physical reads 20, read-ahead reads 33103, ...

Without correcting our index to include the Date column, is there some way we can achieve the same results with better performance?

UNION ALL

In this case it’s possible to rewrite our query logic to use UNION ALL instead of IN/ORs:

SELECT 
    Name,UserId,Date 
FROM 
    dbo.Badges 
WHERE 
    Name = 'Benefactor' 
UNION ALL
SELECT 
    Name,UserId,Date 
FROM 
    dbo.Badges 
WHERE 
    Name = 'Research Assistant'
OPTION(MAXDOP 1)
UNION ALL execution plan

We get the same exact results through a hybrid execution plan.

In this case, our plan mirrors what SQL Server did when running our original two queries separately:

  • The rows where Name = 'Benefactor' are returned by scanning the clustered index.
  • The nonclustered index is seeked with clustered index lookups for the Name = 'Research Assistant' records.

Looking at the IO statistics for this UNION ALL query:

(18062 rows affected)
Table 'Badges'. Scan count 2, logical reads 50120, physical reads 6, read-ahead reads 49649, ...

Even though this query reads the whole clustered index to get the Benefactor rows, the total number of logical reads is still smaller than the seek/key lookup pattern seen in the combined query with IN(). This UNION ALL version gives SQL Server the ability to build a hybrid execution plan, combining two different techniques to generate a plan with fewer overall reads.

IN or UNION ALL?

There’s no way to know for sure without trying each variation.

But if you have a slow performing query that is filtering on multiple values within a column, it might be worth trying to get SQL Server to use a different plan by rewriting the query.

Thanks for reading. You might also enjoy following me on Twitter.

Want to learn even more SQL?

Sign up for my newsletter to receive weekly SQL tips!

4 Ways To Define Lookup Values In A Query

Published on: 2018-06-05

Watch this week’s episode on YouTube.

Occasionally you may need to create a lookup table of values for a single query.  Building a permanent table of these values is a good option if you need to reuse the values frequently, but for one-off, ad-hoc queries you may want to hard-code the lookup table of values directly in your query.

We can hard-code these values using several different techniques.  Below are the techniques I’ve seen used before, going in order from my least to most favorite.

Table Variables

DECLARE @T TABLE 
(
    ColorName varchar(20), 
    HexCode char(7)
);

INSERT INTO @T VALUES 
        ('FireBrick','#B22222'),
        ('HotPink','#FF69B4'),
        ('Tomato','#FF6347'),
        ('PapayaWhip','#FFEFD5'),
        ('RebeccaPurple','#663399'),
        ('LawnGreen','#7CFC00'),
        ('MidnightBlue','#191970');

SELECT * FROM @T;

Table variables get a bad rap in SQL Server because they don’t provide accurate row estimates to the query optimizer.  This can cause SQL Server to come up with some really terrible execution plans that will kill your query’s performance.

However, if your use case is a single small lookup table of less than 100 records, table variables might actually be a viable option.  They are quick and easy to setup and can be added to the top of your query.

With that said, I don’t think I’ve ever used a table variable in this type of scenario (or any scenario really).  I know some people love using them and I think that’s fine as long as you are keeping track of your query performance.  For me though, there are so many better options available…

Temporary Tables

CREATE TABLE #T 
(
    ColorName varchar(20), 
    HexCode char(7)
);

INSERT INTO #T VALUES 
        ('FireBrick','#B22222'),
        ('HotPink','#FF69B4'),
        ('Tomato','#FF6347'),
        ('PapayaWhip','#FFEFD5'),
        ('RebeccaPurple','#663399'),
        ('LawnGreen','#7CFC00'),
        ('MidnightBlue','#191970');

SELECT * FROM #T;

Temp tables are the answer to many of the table variable’s shortcomings.

Temp tables can perform well with larger amounts of data because they can be indexed and can have statistics generated on them.  Both of these features typically help SQL Server generate better execution plans.

There is some overhead in coding a temp table though: just like a table variable, a temp table needs to be created and inserted into before being able to use it in your query.  While normally not a huge deal, this is not something I want to have to do in those instances where I want to define some lookup values quickly…

SELECT with UNION ALL

SELECT
    *
FROM
    (
        SELECT 'FireBrick','#B22222'     UNION ALL
        SELECT 'HotPink','#FF69B4'   UNION ALL
        SELECT 'Tomato','#FF6347'    UNION ALL
        SELECT 'PapayaWhip','#FFEFD5'    UNION ALL
        SELECT 'RebeccaPurple','#663399' UNION ALL
        SELECT 'LawnGreen','#7CFC00'     UNION ALL
        SELECT 'MidnightBlue','#191970'
    ) T(ColorName,HexCode);

The next option is hard-coding values in SELECT statements and then joining them together with UNION ALLs.

This is probably the most common technique I see, and for good reason: the syntax is straight forward and doesn’t require any special setup; perfect for the one-time use ad-hoc scenario.

Its format also makes it easy to use the ALT + highlight shortcut to quickly create a derived table lookup from the results of another query or values copied from elsewhere.

I do like this method a lot, but there is one method that I like slightly more…

The VALUES() Constructor

SELECT
    *
FROM
    (VALUES 
        ('FireBrick','#B22222'),
        ('HotPink','#FF69B4'),
        ('Tomato','#FF6347'),
        ('PapayaWhip','#FFEFD5'),
        ('RebeccaPurple','#663399'),
        ('LawnGreen','#7CFC00'),
        ('MidnightBlue','#191970')
        ) T(ColorName,HexCode);

You’ve probably use the VALUES constructor in an INSERT INTO statement, but did you know you can also use it in a FROM clause?

This syntax is similar to our SELECT + UNION ALL technique above, except we are swapping in single quotes and parentheses for SELECTs and UNION ALLs.  I find this slightly easier to write, if only because it requires typing out fewer characters and feels more programmatic.

One Last Tip: CTE

WITH HtmlColors AS (
        SELECT 'FireBrick' AS ColorName,'#B22222' AS HexCode     UNION ALL
        SELECT 'HotPink','#FF69B4'   UNION ALL
        SELECT 'Tomato','#FF6347'    UNION ALL
        SELECT 'PapayaWhip','#FFEFD5'    UNION ALL
        SELECT 'RebeccaPurple','#663399' UNION ALL
        SELECT 'LawnGreen','#7CFC00'     UNION ALL
        SELECT 'MidnightBlue','#191970'
)

SELECT * FROM HtmlColors

This isn’t really an additional technique, but something related that I use often and feels appropriate to mention.

If using either the SELECT + UNION ALL or VALUES techniques, you can put those lookup queries into a common table expression for easier referencing.

This doesn’t give any performance advantage, but it does help keep your code clean by putting your lookup logic right at the top of your file.  This becomes particularly useful when using those hard-coded lookup values as parameters, allowing all changes to your query to be made right at the top of your file during subsequent runs.

Thanks for reading. You might also enjoy following me on Twitter.

Want to learn even more SQL?

Sign up for my newsletter to receive weekly SQL tips!


OR vs UNION ALL – Is One Better For Performance?

Published on: 2018-02-20

Today I want to show you a trick that could make your queries run faster.

It won’t always work, but when it does everyone will be impressed with your performance tuning prowess.  Let’s go!

Watch this week’s episode on YouTube.

Our Skewed Data

Let’s create a table and insert some data.
Notice the heavily skewed value distribution.  Also notice how we have a clustered index and a very skimpy nonclustered index:
DROP DATABASE IF EXISTS ORUnionAll
CREATE DATABASE ORUnionAll
GO

CREATE TABLE ORUnionAll.dbo.TestData
(
	Col1 int,
	Col2 char(200),
	Col3 int 
)
GO

INSERT INTO ORUnionAll.dbo.TestData VALUES (1,'',1)
GO 10000
INSERT INTO ORUnionAll.dbo.TestData VALUES (2,'',2)
GO 50
INSERT INTO ORUnionAll.dbo.TestData VALUES (3,'',3)
GO 50

CREATE CLUSTERED INDEX CL_Col1 ON ORUnionAll.dbo.TestData ( Col1 )
GO

CREATE NONCLUSTERED INDEX IX_Col3 ON ORUnionAll.dbo.TestData (Col3)
GO

If we write a query that filters on one of the low-occurrence values in Col3, SQL Server will perform an index seek with a key lookup (since our skimpy nonclustered index doesn’t cover all of the columns in our SELECT):

SELECT 
	Col2, Col3
FROM 
	ORUnionAll.dbo.TestData
WHERE
	Col3 = 2

If we then add an OR to our WHERE clause and filter on another low-occurrence value in Col3, SQL Server changes how it wants to retrieve results:

SELECT 
	Col2, Col3
FROM 
	ORUnionAll.dbo.TestData
WHERE
	Col3 = 2 OR Col3 = 3

Suddenly those key-lookups become too expensive for SQL Server and the query optimizer thinks it’ll be faster to just scan the entire clustered index.

In general this makes sense; SQL Server tries to pick plans that are good enough in most scenarios, and in general I think it chooses wisely.

However, sometimes SQL Server doesn’t pick great plans.  Sometimes the plans it picks are downright terrible.

If we encountered a similar scenario in the real-world where our tables had more columns, more rows, and larger datatypes, having SQL Server switch from a seek to a scan could kill performance.

So what can we do?

Solutions…maybe

The first thing that comes to mind is to modify or add some indexes.

But maybe our (real-world) table already has too many indexes.  Or maybe we are working with a data source where we can’t modify our indexes.

We could also use the FORCESEEK hint, but I don’t like using hints as permanent solutions because they feel dirty (and are likely to do unexpected things as your data changes).

One solution to UNION ALL

One solution that a lot of people overlook is rewriting the query so that it uses UNION ALLs instead of ORs.

A lot of the time it’s pretty easy to refactor the query to multiple SELECT statements with UNION ALLs while remaining logically the same and returning the same results:

SELECT 
	Col2, Col3
FROM 
	ORUnionAll.dbo.TestData
WHERE 
	Col3 = 2
UNION ALL
SELECT 
	Col2, Col3
FROM 
	ORUnionAll.dbo.TestData
WHERE
	Col3 = 3

Sure, the query is uglier and will be a bigger pain to maintain if you need to make changes in the future, but sometimes we have to suffer for fashion query performance.

But does our UNION ALL query perform better?

Well the plan shows seeks, but as Erik Darling recently pointed out, seeks aren’t always a good thing.

So let’s compare the reads of the OR query versus the UNION ALL query using SET STATISTICS IO ON:

So in this case, tricking SQL Server to pick a a different plan by using UNION ALLs gave us a performance boost.  The difference in reads isn’t that large in the above scenario, but I’ve had this trick take my queries from minutes to seconds in the real world.

So the next time you are experiencing poor performance from a query with OR operators in it, try rewriting it using UNION ALLs.

It’s not always going to fix your performance problem but you won’t know until you give it a try.

Thanks for reading. You might also enjoy following me on Twitter.

Want to learn even more SQL?

Sign up for my newsletter to receive weekly SQL tips!