How to Use SQL Temporal Tables For Easy Point-In-Time Analysis

Bordeaux, The Grand Theatre” by Stefano Montagner is licensed under CC BY-NC-ND 2.0

Have you ever needed to look at what data in a table used to look like?

If you have, it probably took a knuckle-cracking filled session of writing group-by statements, nested sub-queries, and window functions to write your time-travelling query.

Sorry for your lost day of productivity — I’ve been there too.

Fortunately for us, SQL Server 2016 introduces a new feature to make our point-in-time analysis queries easy to write: temporal tables.

Temporal Tables? Are Those The Same As Temporary Tables?

Don’t let the similar sounding name fool you: “temporal” <> “temporary”.

Temporal tables consist of two parts:

  1. The temporal table — this is the table that contains the current values of your data.
  2. The historical table — this table holds all of the previous values that at some point existed in your temporal table.

You might have created a similar setup yourself in previous versions of SQL using triggers. However, using a temporal table is different from this because:

  1. You don’t need to write any triggers/stored procedures! All of the history tracking is done automatically by SQL Server.
  2. Retrieving the data uses a simple WHERE clause — no complex querying required.

I want to make my life easier by using temporal tables! Take my money and show me how!

I’m flattered by your offer, but since we are good friends I’ll let you in on these secrets for free.

First let’s create a temporal table. I’m thinking about starting up a car rental business, so let’s model it after that:

The key things to note with our new table above are that

  1. it contains a PRIMARY KEY.
  2. it contains two datetime2 fields, marked with GENERATED ALWAYS AS ROW START/END.
  3. It contains the PERIOD FOR SYSTEM_TIME statement.
  4. It contains the SYSTEM_VERSIONING = ON property with the (optional) historical table name (dbo.CarIntventoryHistory).

If we query our newly created tables, you’ll notice our column layouts are identical:

Let’s fill it with the choice car of car rental agencies all across the U.S. — the Chevy Malibu:

Although we got some unassuming car models, at least we can express our individuality with two different paint colors!

In all of the remaining screen shots, the top result is our temporal table dbo.CarInventory and the bottom result is our historical table dbo.CarInventoryHistory.

You’ll notice that since we’ve only inserted one row for each our cars, there’s no row history yet and therefore our historical table is empty.

Let’s change that by getting some customers and renting out our cars!

Now we see our temporal table at work: we updated the rows in dbo.CarInventory and our historical table was automatically updated with our original values as well as timestamps for how long those rows existed in our table.

After a while, our customers return their rental cars:

It’s totally possible for someone to have driven 73 or 488 miles in a Chevy Malibu in under 4 minutes…ever hear the phrase “drive it like a rental”?

Our temporal table show the current state of our rental cars: the customers have returned the cars back to our lot and each car has accumulated some mileage.

Our historical table meanwhile got a copy of the rows from our temporal table right before our last UPDATE statement. It’s automatically keeping track of all of this history for us!

Continuing on, business is going well at the car rental agency. We get another customer to rent our silver Malibu:

Unfortunately, our second customer gets into a crash and destroys our car:

The customer walked away from the crash unscathed; the same can not be said for our profits.

With the deletion of our silver Malibu, our test data is complete.

Now that we have all of this great historically tracked data, how can we query it?

If we want to reminisce about better times when both cars were damage free and we were making money, we can write a query using SYSTEM_TIME AS OFto show us what our table looked like at that point in the past:

The good old days.

And if we want to do some more detailed analysis, like what rows have been deleted, we can query both temporal and historical tables normally as well:

C̶o̶l̶l̶i̶s̶i̶o̶n̶ Conclusion

Even with my car rental business not working out, at least we were able to see how SQL Server’s temporal tables helped us keep track of our car inventory data.

I hope you got as excited as I did the first time I saw temporal tables in action, especially when it comes to querying with FOR SYSTEM_TIME AS OF. Long gone are the days of needing complicated queries to rebuild data for a certain point in time.

 

Thanks for reading. You might also enjoy following me on Twitter.

Want to learn even more SQL?

Sign up for my newsletter to receive weekly SQL tips!

Here’s a Quick Way To Generate a Running Total in SQL Server

SQL in 60 Seconds #2

Historically it’s been difficult to accomplish certain tasks in SQL Server.

Probably the most annoying problem I had to do regularly before SQL Server 2012 was to generate a running total. How can a running total be so easy to do in Excel, but difficult to do in SQL?

SUM(), click, drag, done. Excel, you will always have a place in my heart.

Before SQL Server 2012, the solution to generating a running total involved cursors, CTEs, nested subqueries, or cross applies. This StackOverflow thread has a variety of solutions if you need to solve this problem in an older version of SQL Server.

However, SQL Server 2012’s introduction of window functions makes creating a running total incredibly easy.

First, some test data:

Next, we write our query using the following window function OVER() syntax:

The syntax for our OVER() clause is simple:

  • SUM(Price) specifies which column we are creating the running total on
  • PARTITION BY specifies around what group of data we want to create our “window” — each new window will reset the running total
  • ORDER BY specifies in what order the rows should be sorted before being summed

The results? An easy to write running total:

 

Thanks for reading. You might also enjoy following me on Twitter.

Want to learn even more SQL?

Sign up for my newsletter to receive weekly SQL tips!

5 Business Problems You Can Solve With Temporal Tables

It’s 4:30 pm on Friday and Mr. Manager comes along to tell you that he needs you to run some important ad-hoc analysis for him.

Previously this meant having to stay late at the office, writing cumbersome queries to extract business information from transactional data.

Lucky for you, you’ve recently started using Temporal Tables in SQL Server ensuring that you’ll be able to answer your boss’s questions and still make it to happy hour for $3 margaritas.

Sound like a plan? Keep reading below!

The Data

For these demos, we’ll be using my imaginary car rental business data. It consists of our temporal table dbo.CarInventory and our history table dbo.CarInventoryHistory:

I’ve upgraded my business — we now have FOUR Chevy Malibus available for you to rent

Business Problem #1 — “Get me current inventory!”

To get our current inventory of rental cars, all we have to do is query the temporal table:

That’s it.

I know this query seems lame — it’s just a SELECT FROM statement. There are no FOR SYSTEM TIME clauses, WHERE statements, and no other interesting T-SQL features.

But that’s the point! Have you ever had to get the “current” rows out of a table that is keeping track of all transactions? I’m sure it involved some GROUP BY statements, some window functions, and more than a few cups of coffee.

Temporal tables automatically manage your transaction history, providing the most current records in one table (dbo.CarInventory) and all of the historical transactions in another (dbo.CarInventoryHistory). No need for complicated queries.

Business Problem #2 — “How many miles on average do our customers drive each of our cars?”

In this example, we use FOR SYSTEM_TIME ALL and a plain old GROUP BY to get the data we need:

Some cars get driven a lot more. Causation or correlation?

FOR SYSTEM_TIME ALL returns all rows from both the temporal and history table. It’s equivalent to:

Once again, there isn’t anything too fancy going on here — but that’s the point. With temporal tables, your data is organized to make analysis easier.

Business Problem #3 — “How many cars do we rent out week over week?”

Here at Wagner Car Rentals we want to figure out how often our cars are being rented and see how those numbers change from week to week.

In this query, we are using FOR SYSTEM_TIME FOR/TO on our temporal table to specify what data we want in our “CurrentWeek” and “PreviousWeek” subqueries.

FOR/TO returns any records that were active during the specified range(BETWEEN/AND does the same thing, but its upper bound datetime2 value is inclusive instead of exclusive).

Business Problem #4 — “What color cars are rented most often?”

We’re thinking of expanding our fleet of rental vehicles and want to purchase cars in the most popular colors so we can keep customers happy (and get more of their business!). How can we tell which color cars get rented most often?

Here we use CONTAINED IN because we want to get precise counts of how many cars were rented and returned in a specific date range (if a car wasn’t returned — stolen, wrecked and totaled, etc… — we don’t want to purchase more of those colors in the future).

Business Problem #5 — “Jerry broke it. FIX IT!”

The computer systems that we use at Wagner Car Rentals are a little…dated.

Instead of scanning a bar code to return a car back into our system, our employees need to manually type in the car details. The problem here is that some employees (like Jerry) can’t type, and often makes typos:

Having inconsistent data makes our reporting much more difficult, but fortunately since we have our temporal table tracking row-level history, we can easily correct Jerry’s typos by pulling the correct values from a previous record:

Typos fixed!

Although we could have fixed this issue without using a temporal table, it shows how having all of the row-level transaction history makes it possible to repair incorrect data in more difficult scenarios. For even hairier situations, you can even roll-back your temporal table data.

Conclusion

Temporal tables are easy to setup and make writing analytical queries a cinch.

Hopefully writing queries against temporal tables will prevent you from having to stay late in the office the next time your manager asks you to run some ad-hoc analysis.

 

Thanks for reading. You might also enjoy following me on Twitter.

Want to learn even more SQL?

Sign up for my newsletter to receive weekly SQL tips!

How To Use Temporal Tables For Easy Point-In-Time Analysis

Bordeaux, The Grand Theatre” by Stefano Montagner is licensed under CC BY-NC-ND 2.0

You can watch this blog post on YouTube too!

Have you ever needed to look at what data in a table used to look like?

If you have, it probably took a knuckle-cracking filled session of writing group-by statements, nested sub-queries, and window functions to write your time-travelling query.

Sorry for your lost day of productivity — I’ve been there too.

Fortunately for us, SQL Server 2016 introduces a new feature to make our point-in-time analysis queries easy to write: temporal tables.

Temporal Tables? Are Those The Same As Temporary Tables?

Don’t let the similar sounding name fool you: “temporal” <> “temporary”.

Temporal tables consist of two parts:

  1. The temporal table — this is the table that contains the current values of your data.
  2. The historical table — this table holds all of the previous values that at some point existed in your temporal table.

You might have created a similar setup yourself in previous versions of SQL using triggers. However, using a temporal table is different from this because:

  1. You don’t need to write any triggers/stored procedures! All of the history tracking is done automatically by SQL Server.
  2. Retrieving the data uses a simple WHERE clause — no complex querying required.

I want to make my life easier by using temporal tables! Take my money and show me how!

I’m flattered by your offer, but since we are good friends I’ll let you in on these secrets for free.

First let’s create a temporal table. I’m thinking about starting up a car rental business, so let’s model it after that:

The key things to note with our new table above are that

  1. it contains a PRIMARY KEY.
  2. it contains two datetime2 fields, marked with GENERATED ALWAYS AS ROW START/END.
  3. It contains the PERIOD FOR SYSTEM_TIME statement.
  4. It contains the SYSTEM_VERSIONING = ON property with the (optional) historical table name (dbo.CarIntventoryHistory).

If we query our newly created tables, you’ll notice our column layouts are identical:

Let’s fill it with the choice car of car rental agencies all across the U.S. — the Chevy Malibu:

Although we got some unassuming car models, at least we can express our individuality with two different paint colors!

In all of the remaining screen shots, the top result is our temporal table dbo.CarInventory and the bottom result is our historical table dbo.CarInventoryHistory.

You’ll notice that since we’ve only inserted one row for each our cars, there’s no row history yet and therefore our historical table is empty.

Let’s change that by getting some customers and renting out our cars!

Now we see our temporal table at work: we updated the rows in dbo.CarInventory and our historical table was automatically updated with our original values as well as timestamps for how long those rows existed in our table.

After a while, our customers return their rental cars:

It’s totally possible for someone to have driven 73 or 488 miles in a Chevy Malibu in under 4 minutes…ever hear the phrase “drive it like a rental”?

Our temporal table show the current state of our rental cars: the customers have returned the cars back to our lot and each car has accumulated some mileage.

Our historical table meanwhile got a copy of the rows from our temporal table right before our last UPDATE statement. It’s automatically keeping track of all of this history for us!

Continuing on, business is going well at the car rental agency. We get another customer to rent our silver Malibu:

Unfortunately, our second customer gets into a crash and destroys our car:

The customer walked away from the crash unscathed; the same can not be said for our profits.

With the deletion of our silver Malibu, our test data is complete.

Now that we have all of this great historically tracked data, how can we query it?

If we want to reminisce about better times when both cars were damage free and we were making money, we can write a query using SYSTEM_TIME AS OF to show us what our table looked like at that point in the past:

The good old days.

And if we want to do some more detailed analysis, like what rows have been deleted, we can query both temporal and historical tables normally as well:

C̶o̶l̶l̶i̶s̶i̶o̶n̶ Conclusion

Even with my car rental business not working out, at least we were able to see how SQL Server’s temporal tables helped us keep track of our car inventory data.

I hope you got as excited as I did the first time I saw temporal tables in action, especially when it comes to querying with FOR SYSTEM_TIME AS OF. Long gone are the days of needing complicated queries to rebuild data for a certain point in time.

 

Thanks for reading. You might also enjoy following me on Twitter.

Want to learn even more SQL?

Sign up for my newsletter to receive weekly SQL tips!